p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.54C22, C24.381C23, C23.568C24, C22.3422+ 1+4, C2.32D42, (C2×D4)⋊11D4, C23.56(C2×D4), C24⋊3C4⋊21C2, C23⋊2D4⋊31C2, (C23×C4)⋊23C22, C2.81(D4⋊5D4), (C22×D4)⋊10C22, C23.4Q8⋊38C2, C23.165(C4○D4), C23.10D4⋊68C2, C23.23D4⋊75C2, C23.11D4⋊73C2, C2.35(C23⋊3D4), (C22×C4).173C23, C22.377(C22×D4), C2.C42⋊32C22, C2.6(C22.54C24), C2.56(C22.32C24), (C2×C4⋊D4)⋊27C2, (C2×C4⋊C4)⋊28C22, (C2×C4).409(C2×D4), (C2×C22≀C2)⋊11C2, (C2×C22⋊C4)⋊25C22, C22.435(C2×C4○D4), SmallGroup(128,1400)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.568C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ede=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >
Subgroups: 996 in 408 conjugacy classes, 104 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2.C42, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C23×C4, C22×D4, C22×D4, C25, C24⋊3C4, C23.23D4, C23⋊2D4, C23.10D4, C23.11D4, C23.4Q8, C2×C22≀C2, C2×C4⋊D4, C23.568C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C23⋊3D4, C22.32C24, D42, D4⋊5D4, C22.54C24, C23.568C24
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 16)(2 15)(3 11)(4 12)(5 27)(6 28)(7 9)(8 10)(13 30)(14 29)(17 19)(18 20)(21 26)(22 25)(23 31)(24 32)
(1 20)(2 19)(3 14)(4 13)(5 10)(6 9)(7 28)(8 27)(11 29)(12 30)(15 17)(16 18)(21 23)(22 24)(25 32)(26 31)
(1 28)(2 27)(3 31)(4 32)(5 15)(6 16)(7 20)(8 19)(9 18)(10 17)(11 23)(12 24)(13 25)(14 26)(21 29)(22 30)
(1 26)(2 25)(3 8)(4 7)(5 29)(6 30)(9 12)(10 11)(13 28)(14 27)(15 22)(16 21)(17 24)(18 23)(19 32)(20 31)
(1 20)(2 19)(3 11)(4 12)(5 8)(6 7)(9 28)(10 27)(13 30)(14 29)(15 17)(16 18)
(1 17)(2 18)(3 13)(4 14)(5 10)(6 9)(7 28)(8 27)(11 30)(12 29)(15 20)(16 19)(21 31)(22 32)(23 26)(24 25)
G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,16)(2,15)(3,11)(4,12)(5,27)(6,28)(7,9)(8,10)(13,30)(14,29)(17,19)(18,20)(21,26)(22,25)(23,31)(24,32), (1,20)(2,19)(3,14)(4,13)(5,10)(6,9)(7,28)(8,27)(11,29)(12,30)(15,17)(16,18)(21,23)(22,24)(25,32)(26,31), (1,28)(2,27)(3,31)(4,32)(5,15)(6,16)(7,20)(8,19)(9,18)(10,17)(11,23)(12,24)(13,25)(14,26)(21,29)(22,30), (1,26)(2,25)(3,8)(4,7)(5,29)(6,30)(9,12)(10,11)(13,28)(14,27)(15,22)(16,21)(17,24)(18,23)(19,32)(20,31), (1,20)(2,19)(3,11)(4,12)(5,8)(6,7)(9,28)(10,27)(13,30)(14,29)(15,17)(16,18), (1,17)(2,18)(3,13)(4,14)(5,10)(6,9)(7,28)(8,27)(11,30)(12,29)(15,20)(16,19)(21,31)(22,32)(23,26)(24,25)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,16)(2,15)(3,11)(4,12)(5,27)(6,28)(7,9)(8,10)(13,30)(14,29)(17,19)(18,20)(21,26)(22,25)(23,31)(24,32), (1,20)(2,19)(3,14)(4,13)(5,10)(6,9)(7,28)(8,27)(11,29)(12,30)(15,17)(16,18)(21,23)(22,24)(25,32)(26,31), (1,28)(2,27)(3,31)(4,32)(5,15)(6,16)(7,20)(8,19)(9,18)(10,17)(11,23)(12,24)(13,25)(14,26)(21,29)(22,30), (1,26)(2,25)(3,8)(4,7)(5,29)(6,30)(9,12)(10,11)(13,28)(14,27)(15,22)(16,21)(17,24)(18,23)(19,32)(20,31), (1,20)(2,19)(3,11)(4,12)(5,8)(6,7)(9,28)(10,27)(13,30)(14,29)(15,17)(16,18), (1,17)(2,18)(3,13)(4,14)(5,10)(6,9)(7,28)(8,27)(11,30)(12,29)(15,20)(16,19)(21,31)(22,32)(23,26)(24,25) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,16),(2,15),(3,11),(4,12),(5,27),(6,28),(7,9),(8,10),(13,30),(14,29),(17,19),(18,20),(21,26),(22,25),(23,31),(24,32)], [(1,20),(2,19),(3,14),(4,13),(5,10),(6,9),(7,28),(8,27),(11,29),(12,30),(15,17),(16,18),(21,23),(22,24),(25,32),(26,31)], [(1,28),(2,27),(3,31),(4,32),(5,15),(6,16),(7,20),(8,19),(9,18),(10,17),(11,23),(12,24),(13,25),(14,26),(21,29),(22,30)], [(1,26),(2,25),(3,8),(4,7),(5,29),(6,30),(9,12),(10,11),(13,28),(14,27),(15,22),(16,21),(17,24),(18,23),(19,32),(20,31)], [(1,20),(2,19),(3,11),(4,12),(5,8),(6,7),(9,28),(10,27),(13,30),(14,29),(15,17),(16,18)], [(1,17),(2,18),(3,13),(4,14),(5,10),(6,9),(7,28),(8,27),(11,30),(12,29),(15,20),(16,19),(21,31),(22,32),(23,26),(24,25)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2Q | 4A | ··· | 4H | 4I | ··· | 4N |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.568C24 | C24⋊3C4 | C23.23D4 | C23⋊2D4 | C23.10D4 | C23.11D4 | C23.4Q8 | C2×C22≀C2 | C2×C4⋊D4 | C2×D4 | C23 | C22 |
# reps | 1 | 1 | 4 | 1 | 2 | 2 | 1 | 2 | 2 | 8 | 4 | 4 |
Matrix representation of C23.568C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;
C23.568C24 in GAP, Magma, Sage, TeX
C_2^3._{568}C_2^4
% in TeX
G:=Group("C2^3.568C2^4");
// GroupNames label
G:=SmallGroup(128,1400);
// by ID
G=gap.SmallGroup(128,1400);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,e*d*e=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations